7.3: Add and Subtract Rational Expressions (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    5161
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    Summary

    By the end of this section, you will be able to:

    • Add and subtract rational expressions with a common denominator
    • Add and subtract rational expressions whose denominators are opposites
    • Find the least common denominator of rational expressions
    • Add and subtract rational expressions with unlike denominators
    • Add and subtract rational functions

    Before you get started, take this readiness quiz.

    1. Add: \(\dfrac{7}{10}+\dfrac{8}{15}\).
      If you missed this problem, review [link].
    2. Subtract: \(\dfrac{3x}{4}−\dfrac{8}{9}\).
      If you missed this problem, review [link].
    3. Subtract: \(6(2x+1)−4(x−5)\).
      If you missed this problem, review [link].

    Add and Subtract Rational Expressions with a Common Denominator

    What is the first step you take when you add numerical fractions? You check if they have a common denominator. If they do, you add the numerators and place the sum over the common denominator. If they do not have a common denominator, you find one before you add.

    It is the same with rational expressions. To add rational expressions, they must have a common denominator. When the denominators are the same, you add the numerators and place the sum over the common denominator.

    RATIONAL EXPRESSION ADDITION AND SUBTRACTION

    If \(p\), \(q\), and \(r\) are polynomials where \(r\neq 0\), then

    \[\dfrac{p}{r}+\dfrac{q}{r}=\dfrac{p+q}{r} \quad \text{and} \quad \dfrac{p}{r}−\dfrac{q}{r}=\dfrac{p−q}{r}\nonumber\]

    To add or subtract rational expressions with a common denominator, add or subtract the numerators and place the result over the common denominator.

    We always simplify rational expressions. Be sure to factor, if possible, after you subtract the numerators so you can identify any common factors.

    Remember, too, we do not allow values that would make the denominator zero. What value of \(x\) should be excluded in the next example?

    Example \(\PageIndex{1}\)

    Add: \(\dfrac{11x+28}{x+4}+\dfrac{x^2}{x+4}\).

    Solution

    Since the denominator is \(x+4\), we must exclude the value \(x=−4\).

    \(\begin{array} {ll} &\dfrac{11x+28}{x+4}+\dfrac{x^2}{x+4},\space x\neq −4 \\ \begin{array} {l} \text{The fractions have a common denominator,} \\ \text{so add the numerators and place the sum} \\ \text{over the common denominator.} \end{array} &\dfrac{11x+28+x^2}{x+4} \\ & \\ \text{Write the degrees in descending order.} &\dfrac{x^2+11x+28}{x+4} \\ & \\ \text{Factor the numerator.} &\dfrac{(x+4)(x+7)}{x+4} \\ & \\ \text{Simplify by removing common factors.} &\dfrac{\cancel{(x+4)}(x+7)}{\cancel{x+4}} \\ & \\ \text{Simplify.} &x+7 \end{array}\)

    The expression simplifies to \(x+7\) but the original expression had a denominator of \(x+4\) so \(x\neq −4\).

    Try It \(\PageIndex{2}\)

    Simplify: \(\dfrac{9x+14}{x+7}+\dfrac{x^2}{x+7}\).

    Answer

    \(x+2\)

    Try It \(\PageIndex{3}\)

    Simplify: \(\dfrac{x^2+8x}{x+5}+\dfrac{15}{x+5}\).

    Answer

    \(x+3\)

    To subtract rational expressions, they must also have a common denominator. When the denominators are the same, you subtract the numerators and place the difference over the common denominator. Be careful of the signs when you subtract a binomial or trinomial.

    Example \(\PageIndex{4}\)

    Subtract: \(\dfrac{5x^2−7x+3}{x^2−3x+18}−\dfrac{4x^2+x−9}{x^2−3x+18}\).

    Solution

    \(\begin{array} {ll} &\dfrac{5x^2−7x+3}{x^2−3x+18}−\dfrac{4x^2+x−9}{x^2−3x+18} \\ & \\ \begin{array} {l} \text{Subtract the numerators and place the} \\ \text{difference over the common denominator.} \end{array} &\dfrac{5x^2−7x+3−(4x^2+x−9)}{x^2−3x+18} \\ & \\ \text{Distribute the sign in the numerator.} &\dfrac{5x^2−7x+3−4x^2−x+9}{x^2−3x−18} \\ & \\ \text{Combine like terms.} &\dfrac{x^2−8x+12}{x^2−3x−18} \\ & \\ \text{Factor the numerator and the denominator.} &\dfrac{(x−2)(x−6)}{(x+3)(x−6)} \\ & \\ \text{Simplify by removing common factors.} &\dfrac{(x−2)\cancel{(x−6)}}{(x+3)\cancel{(x−6)}} \\ & \\ &(x−2)(x+3) \end{array}\)

    Try It \(\PageIndex{5}\)

    Subtract: \(\dfrac{4x^2−11x+8}{x^2−3x+2}−\dfrac{3x^2+x−3}{x^2−3x+2}\).

    Answer

    \(\dfrac{x−11}{x−2}\)

    Try It \(\PageIndex{6}\)

    Subtract: \(\dfrac{6x^2−x+20}{x^2−81}−\dfrac{5x^2+11x−7}{x^2−81}\).

    Answer

    \(\dfrac{x−3}{x+9}\)

    Add and Subtract Rational Expressions Whose Denominators are Opposites

    When the denominators of two rational expressions are opposites, it is easy to get a common denominator. We just have to multiply one of the fractions by \(\dfrac{−1}{−1}\).

    Let’s see how this works.

    7.3: Add and Subtract Rational Expressions (2)
    Multiply the second fraction by \(\dfrac{−1}{−1}\). 7.3: Add and Subtract Rational Expressions (3)
    The denominators are the same. 7.3: Add and Subtract Rational Expressions (4)
    Simplify. 7.3: Add and Subtract Rational Expressions (5)

    Be careful with the signs as you work with the opposites when the fractions are being subtracted.

    Example \(\PageIndex{7}\)

    Subtract: \(\dfrac{m^2−6m}{m^2−1}−\dfrac{3m+2}{1−m^2}\).

    Solution

    7.3: Add and Subtract Rational Expressions (6)

    The denominators are opposites, so multiply the
    second fraction by \(\dfrac{−1}{−1}\).

    7.3: Add and Subtract Rational Expressions (7)
    Simplify the second fraction. 7.3: Add and Subtract Rational Expressions (8)
    The denominators are the same. Subtract the numerators. 7.3: Add and Subtract Rational Expressions (9)
    Distribute. 7.3: Add and Subtract Rational Expressions (10)
    Combine like terms. 7.3: Add and Subtract Rational Expressions (11)
    Factor the numerator and denominator. 7.3: Add and Subtract Rational Expressions (12)
    Simplify by removing common factors. 7.3: Add and Subtract Rational Expressions (13)
    Simplify. 7.3: Add and Subtract Rational Expressions (14)
    Try It \(\PageIndex{8}\)

    Subtract: \(\dfrac{y^2−5y}{y^2−4}−\dfrac{6y−6}{4−y^2}\).

    Answer

    \(\dfrac{y+3}{y+2}\)

    Try It \(\PageIndex{9}\)

    Subtract: \(\dfrac{2n^2+8n−1}{n^2−1}−\dfrac{n^2−7n−1}{1−n^2}\).

    Answer

    \(\dfrac{3n−2}{n−1}\)

    Find the Least Common Denominator of Rational Expressions

    When we add or subtract rational expressions with unlike denominators, we will need to get common denominators. If we review the procedure we used with numerical fractions, we will know what to do with rational expressions.

    Let’s look at this example: \(\dfrac{7}{12}+\dfrac{5}{18}\). Since the denominators are not the same, the first step was to find the least common denominator (LCD).

    To find the LCD of the fractions, we factored 12 and 18 into primes, lining up any common primes in columns. Then we “brought down” one prime from each column. Finally, we multiplied the factors to find the LCD.

    When we add numerical fractions, once we found the LCD, we rewrote each fraction as an equivalent fraction with the LCD by multiplying the numerator and denominator by the same number. We are now ready to add.

    7.3: Add and Subtract Rational Expressions (15)

    We do the same thing for rational expressions. However, we leave the LCD in factored form.

    FIND THE LEAST COMMON DENOMINATOR OF RATIONAL EXPRESSIONS.
    1. Factor each denominator completely.
    2. List the factors of each denominator. Match factors vertically when possible.
    3. Bring down the columns by including all factors, but do not include common factors twice.
    4. Write the LCD as the product of the factors.

    Remember, we always exclude values that would make the denominator zero. What values of xx should we exclude in this next example?

    Example \(\PageIndex{10}\)

    a. Find the LCD for the expressions \(\dfrac{8}{x^2−2x−3}\), \(\dfrac{3x}{x^2+4x+3}\) and b. rewrite them as equivalent rational expressions with the lowest common denominator.

    Solution

    a.

    Find the LCD for \(\dfrac{8}{x^2−2x−3}\), \(\dfrac{3x}{x^2+4x+3}\).
    Factor each denominator completely, lining up common factors.

    Bring down the columns.

    7.3: Add and Subtract Rational Expressions (16)
    Write the LCD as the product of the factors. 7.3: Add and Subtract Rational Expressions (17)

    b.

    7.3: Add and Subtract Rational Expressions (18)
    Factor each denominator. 7.3: Add and Subtract Rational Expressions (19)
    Multiply each denominator by the ‘missing’
    LCD factor and multiply each numerator by the same factor.
    7.3: Add and Subtract Rational Expressions (20)
    Simplify the numerators. 7.3: Add and Subtract Rational Expressions (21)
    Try It \(\PageIndex{11}\)

    a. Find the LCD for the expressions \(\dfrac{2}{x^2−x−12}\), \(\dfrac{1}{x^2−16}\) b. rewrite them as equivalent rational expressions with the lowest common denominator.

    Answer

    a. \((x−4)(x+3)(x+4)\)
    b. \(\dfrac{2x+8}{(x−4)(x+3)(x+4)}\),
    \(\dfrac{x+3}{(x−4)(x+3)(x+4)}\)

    Try It \(\PageIndex{12}\)

    a. Find the LCD for the expressions \(\dfrac{3x}{x^2−3x+10}\), \(\dfrac{5}{x^2+3x+2}\) b. rewrite them as equivalent rational expressions with the lowest common denominator.

    Answer

    a. \((x+2)(x−5)(x+1)\)
    b. \(\dfrac{3x^2+3x}{(x+2)(x−5)(x+1)}\),
    \(\dfrac{5x−25}{(x+2)(x−5)(x+1)}\)

    Add and Subtract Rational Expressions with Unlike Denominators

    Now we have all the steps we need to add or subtract rational expressions with unlike denominators.

    Example \(\PageIndex{13}\): How to Add Rational Expressions with Unlike Denominators

    Add: \(\dfrac{3}{x−3}+\dfrac{2}{x−2}\).

    Solution

    7.3: Add and Subtract Rational Expressions (22)7.3: Add and Subtract Rational Expressions (23)7.3: Add and Subtract Rational Expressions (24)

    Try It \(\PageIndex{14}\)

    Add: \(\dfrac{2}{x−2}+\dfrac{5}{x+3}\).

    Answer

    \(\dfrac{7x−4}{(x−2)(x+3)}\)

    Try It \(\PageIndex{15}\)

    Add: \(\dfrac{4}{m+3}+\dfrac{3}{m+4}\).

    Answer

    \(\dfrac{7m+25}{(m+3)(m+4)}\)

    The steps used to add rational expressions are summarized here.

    ADD OR SUBTRACT RATIONAL EXPRESSIONS.
    1. Determine if the expressions have a common denominator.
      • Yes – go to step 2.
      • No – Rewrite each rational expression with the LCD.
        • Find the LCD.
        • Rewrite each rational expression as an equivalent rational expression with the LCD.
    2. Add or subtract the rational expressions.
    3. Simplify, if possible.

    Avoid the temptation to simplify too soon. In the example above, we must leave the first rational expression as \(\dfrac{3x−6}{(x−3)(x−2)}\) to be able to add it to \(\dfrac{2x−6}{(x−2)(x−3)}\). Simplify only after you have combined the numerators.

    Example \(\PageIndex{16}\)

    Add: \(\dfrac{8}{x^2−2x−3}+\dfrac{3x}{x^2+4x+3}\).

    Solution

    7.3: Add and Subtract Rational Expressions (25)
    Do the expressions have a common denominator? No.
    Rewrite each expression with the LCD.
    \(\begin{array} {ll} & \\ & \\ \text{Find the LCD.} &\begin{array} {l} \hspace{5mm} x^2−2x−3=(x+1)(x−3) \\ \underline{x^2+4x+3=(x+1)\quad (x+3)} \\ & \\ \qquad LCD=(x+1)(x−3)(x+3) \end{array} \end{array} \)
    Rewrite each rational expression as an
    equivalent rational expression with the LCD.
    7.3: Add and Subtract Rational Expressions (26)
    Simplify the numerators. 7.3: Add and Subtract Rational Expressions (27)
    Add the rational expressions. 7.3: Add and Subtract Rational Expressions (28)
    Simplify the numerator. 7.3: Add and Subtract Rational Expressions (29)
    The numerator is prime, so there are
    no common factors.
    Try It \(\PageIndex{17}\)

    Add: \(\dfrac{1}{m^2−m−2}+\dfrac{5m}{m^2+3m+2}\).

    Answer

    \(\dfrac{5m^2−9m+2}{(m+1)(m−2)(m+2)}\)

    Try It \(\PageIndex{18}\)

    Add: \(\dfrac{2n}{n^2−3n−10}+\dfrac{6}{n^2+5n+6}\).

    Answer

    \(\dfrac{2n^2+12n−30}{(n+2)(n−5)(n+3)}\)

    The process we use to subtract rational expressions with different denominators is the same as for addition. We just have to be very careful of the signs when subtracting the numerators.

    Example \(\PageIndex{19}\)

    Subtract: \(\dfrac{8y}{y^2−16}−\dfrac{4}{y−4}\).

    Solution

    7.3: Add and Subtract Rational Expressions (30)
    Do the expressions have a common denominator? No.
    Rewrite each expression with the LCD.
    \(\begin{array} {ll} \text{Find the LCD.} &\begin{array} {l} y^2−16=(y−4)(y+4) \\ \quad \underline{y−4=y−4} \\ LCD=(y−4)(y+4) \end{array} \end{array} \)
    Rewrite each rational expression as an
    equivalent rational expression with the LCD.
    7.3: Add and Subtract Rational Expressions (31)
    Simplify the numerators. 7.3: Add and Subtract Rational Expressions (32)
    Subtract the rational expressions. 7.3: Add and Subtract Rational Expressions (33)
    Simplify the numerator. 7.3: Add and Subtract Rational Expressions (34)
    Factor the numerator to look for common factors. 7.3: Add and Subtract Rational Expressions (35)
    Remove common factors 7.3: Add and Subtract Rational Expressions (36)
    Simplify. 7.3: Add and Subtract Rational Expressions (37)
    Try It \(\PageIndex{20}\)

    Subtract: \(\dfrac{2x}{x^2−4}−\dfrac{1}{x+2}\).

    Answer

    \(\dfrac{1}{x−2}\)

    Try It \(\PageIndex{21}\)

    Subtract: \(\dfrac{3}{z+3}−\dfrac{6z}{z^2−9}\).

    Answer

    \(\dfrac{−3}{z−3}\)

    There are lots of negative signs in the next example. Be extra careful.

    Example \(\PageIndex{22}\)

    Subtract: \(\dfrac{−3n−9}{n^2+n−6}−\dfrac{n+3}{2−n}\).

    Solution

    7.3: Add and Subtract Rational Expressions (38)
    Factor the denominator. 7.3: Add and Subtract Rational Expressions (39)
    Since \(n−2\) and \(2−n\) are opposites, we will
    multiply the second rational expression by \(\dfrac{−1}{−1}\).
    7.3: Add and Subtract Rational Expressions (40)
    7.3: Add and Subtract Rational Expressions (41) 7.3: Add and Subtract Rational Expressions (42)
    Simplify. Remember, \(a−(−b)=a+b\). 7.3: Add and Subtract Rational Expressions (43)
    Do the rational expressions have a
    common denominator? No.
    \(\begin{array} {ll} \text{Find the LCD.} &\begin{array} {l} n^2+n−6=(n−2)(n+3) \\ \quad\underline{n−2=(n−2)} \\ LCD=\quad (n−2)(n+3) \end{array} \end{array} \)
    Rewrite each rational expression as an
    equivalent rational expression with the LCD.
    7.3: Add and Subtract Rational Expressions (44)
    Simplify the numerators. 7.3: Add and Subtract Rational Expressions (45)
    Add the rational expressions. 7.3: Add and Subtract Rational Expressions (46)
    Simplify the numerator. 7.3: Add and Subtract Rational Expressions (47)
    Factor the numerator to look for common factors. 7.3: Add and Subtract Rational Expressions (48)
    Simplify. 7.3: Add and Subtract Rational Expressions (49)
    Try It \(\PageIndex{23}\)

    Subtract: \(\dfrac{3x−1}{x^2−5x−6}−\dfrac{2}{6−x}\).

    Answer

    \(\dfrac{5x+1}{(x−6)(x+1)}\)

    Try It \(\PageIndex{24}\)

    Subtract: \(\dfrac{−2y−2}{y^2+2y−8}−\dfrac{y−1}{2−y}\).

    Answer

    \(\dfrac{y+3}{y+4}\)

    Things can get very messy when both fractions must be multiplied by a binomial to get the common denominator.

    Example \(\PageIndex{25}\)

    Subtract: \(\dfrac{4}{a^2+6a+5}−\dfrac{3}{a^2+7a+10}\).

    Solution

    7.3: Add and Subtract Rational Expressions (50)
    Factor the denominators. 7.3: Add and Subtract Rational Expressions (51)
    Do the rational expressions have a
    common denominator? No.

    \(\begin{array} {ll} \text{Find the LCD.} &\begin{array} {l} a^2+6a+5=(a+1)(a+5) \\ \underline{a^2+7a+10=(a+5)(a+2)} \\ LCD=(a+1)(a+5)(a+2) \end{array} \end{array} \)

    Rewrite each rational expression as an
    equivalent rational expression with the LCD.
    7.3: Add and Subtract Rational Expressions (52)
    Simplify the numerators. 7.3: Add and Subtract Rational Expressions (53)
    Subtract the rational expressions. 7.3: Add and Subtract Rational Expressions (54)
    Simplify the numerator. 7.3: Add and Subtract Rational Expressions (55)
    7.3: Add and Subtract Rational Expressions (56)
    Look for common factors. 7.3: Add and Subtract Rational Expressions (57)
    Simplify. 7.3: Add and Subtract Rational Expressions (58)
    Try It \(\PageIndex{26}\)

    Subtract: \(\dfrac{3}{b^2−4b−5}−\dfrac{2}{b^2−6b+5}\).

    Answer

    \(\dfrac{1}{(b+1)(b−1)}\)

    Try It \(\PageIndex{27}\)

    Subtract: \(\dfrac{4}{x^2−4}−\dfrac{3}{x^2−x−2}\).

    Answer

    \(\dfrac{1}{(x+2)(x+1)}\)

    We follow the same steps as before to find the LCD when we have more than two rational expressions. In the next example, we will start by factoring all three denominators to find their LCD.

    Example \(\PageIndex{28}\)

    Simplify: \(\dfrac{2u}{u−1}+\dfrac{1}{u}−\dfrac{2u−1}{u^2−u}\).

    Solution

    7.3: Add and Subtract Rational Expressions (59)
    Do the expressions have a common denominator? No.
    Rewrite each expression with the LCD.
    \(\begin{array} {ll} \text{Find the LCD.} &\begin{array} {l} u−1=(u−1) \\ u=u \\ \underline{u^2−u=u(u−1)} \\ LCD=u(u−1) \end{array} \end{array}\)
    Rewrite each rational expression as an
    equivalent rational expression with the LCD.
    7.3: Add and Subtract Rational Expressions (60)
    7.3: Add and Subtract Rational Expressions (61)
    Write as one rational expression. 7.3: Add and Subtract Rational Expressions (62)
    Simplify. 7.3: Add and Subtract Rational Expressions (63)
    Factor the numerator, and remove
    common factors.
    7.3: Add and Subtract Rational Expressions (64)
    Simplify. 7.3: Add and Subtract Rational Expressions (65)
    Try It \(\PageIndex{29}\)

    Simplify: \(\dfrac{v}{v+1}+\dfrac{3}{v−1}−\dfrac{6}{v^2−1}\).

    Answer

    \(\dfrac{v+3}{v+1}\)

    Try It \(\PageIndex{30}\)

    Simplify: \(\dfrac{3w}{w+2}+\dfrac{2}{w+7}−\dfrac{17w+4}{w^2+9w+14}\).

    Answer

    \(\dfrac{3w}{w+7}\)

    Add and subtract rational functions

    To add or subtract rational functions, we use the same techniques we used to add or subtract polynomial functions.

    Example \(\PageIndex{31}\)

    Find \(R(x)=f(x)−g(x)\) where \(f(x)=\dfrac{x+5}{x−2}\) and \(g(x)=\dfrac{5x+18}{x^2−4}\).

    xolution
    7.3: Add and Subtract Rational Expressions (66)
    Substitute in the functions \(f(x)\), \(g(x)\). 7.3: Add and Subtract Rational Expressions (67)
    Factor the denominators. 7.3: Add and Subtract Rational Expressions (68)
    Do the expressions have a common denominator? No.
    Rewrite each expression with the LCD.
    \(\begin{array} {ll} \text{Find the LCD.} &\begin{array} {l} x−2=(x−2) \\ \underline{x^2−4=(x−2)(x+2)} \\ \hspace{4mm} LCD=(x−2)(x+2)\end{array} \end{array}\)
    Rewrite each rational expression as an
    equivalent rational expression with the LCD.
    7.3: Add and Subtract Rational Expressions (69)
    Write as one rational expression. 7.3: Add and Subtract Rational Expressions (70)
    Simplify. 7.3: Add and Subtract Rational Expressions (71)
    7.3: Add and Subtract Rational Expressions (72)
    Factor the numerator, and remove
    common factors.
    7.3: Add and Subtract Rational Expressions (73)
    Simplify. 7.3: Add and Subtract Rational Expressions (74)
    Try It \(\PageIndex{32}\)

    Find \(R(x)=f(x)−g(x)\) where \(f(x)=\dfrac{x+1}{x+3}\) and \(g(x)=\dfrac{x+17}{x^2−x−12}\).

    Answer

    \(\dfrac{x−7}{x−4}\)

    Try It \(\PageIndex{33}\)

    Find \(R(x)=f(x)+g(x)\) where \(f(x)=\dfrac{x−4}{x+3}\) and \(g(x)=\dfrac{4x+6}{x^2−9}\).

    Answer

    \(\dfrac{x^2−3x+18}{(x+3)(x−3)}\)

    Access this online resource for additional instruction and practice with adding and subtracting rational expressions.

    • Add and Subtract Rational Expressions- Unlike Denominators

    Key Concepts

    • Rational Expression Addition and Subtraction
      If \(p\), \(q\), and \(r\) are polynomials where \(r\neq 0\), then
      \[\dfrac{p}{r}+\dfrac{q}{r}=\dfrac{p+q}{r} \quad \text{and} \quad \dfrac{p}{r}−\dfrac{q}{r}=\dfrac{p−q}{r}\nonumber\]
    • How to find the least common denominator of rational expressions.
      1. Factor each expression completely.
      2. List the factors of each expression. Match factors vertically when possible.
      3. Bring down the columns.
      4. Write the LCD as the product of the factors.
    • How to add or subtract rational expressions.
      1. Determine if the expressions have a common denominator.
        • Yes – go to step 2.
        • No – Rewrite each rational expression with the LCD.
          • Find the LCD.
          • Rewrite each rational expression as an equivalent rational expression with the LCD.
      2. Add or subtract the rational expressions.
      3. Simplify, if possible.
    7.3: Add and Subtract Rational Expressions (2024)

    References

    Top Articles
    Latest Posts
    Article information

    Author: Rev. Porsche Oberbrunner

    Last Updated:

    Views: 5655

    Rating: 4.2 / 5 (53 voted)

    Reviews: 84% of readers found this page helpful

    Author information

    Name: Rev. Porsche Oberbrunner

    Birthday: 1994-06-25

    Address: Suite 153 582 Lubowitz Walks, Port Alfredoborough, IN 72879-2838

    Phone: +128413562823324

    Job: IT Strategist

    Hobby: Video gaming, Basketball, Web surfing, Book restoration, Jogging, Shooting, Fishing

    Introduction: My name is Rev. Porsche Oberbrunner, I am a zany, graceful, talented, witty, determined, shiny, enchanting person who loves writing and wants to share my knowledge and understanding with you.